Category-selective background connectivity in ventral visual cortex.
نویسندگان
چکیده
Ventral visual cortex contains specialized regions for particular object categories, but little is known about how these regions interact during object recognition. Here we examine how the face-selective fusiform gyrus (FG) and the scene-selective parahippocampal cortex (PHC) interact with each other and with the rest of the brain during different visual tasks. To assess these interactions, we developed a novel approach for identifying patterns of connectivity associated with specific task sets, independent of stimulus-evoked responses. We tested whether this "background connectivity" between the FG and PHC was modulated when subjects engaged in face and scene processing tasks. In contrast to what would be predicted from biased competition or intrinsic activity accounts, we found that the strength of FG-PHC background connectivity depended on which category was task relevant: connectivity increased when subjects attended to scenes (irrespective of whether a competing face was present) and decreased when subjects attended to faces (irrespective of competing scenes). We further discovered that posterior occipital cortex was correlated selectively with the FG during face tasks and the PHC during scene tasks. These results suggest that category specificity exists not only in which regions respond most strongly but also in how these and other regions interact.
منابع مشابه
Short-latency category specific neural responses to human faces in macaque inferotemporal cortex
In this article I would present evidence to show that timing of the flow of neural signals within the ventral visual stream is a crucial part of the neural code for categorization of faces. We recorded the activity of 554 inferotemporal neurons from two macaque monkeys performing a fixation task. More than 1000 object images including human and non-primate animal faces were presented up to 10 t...
متن کاملConnectivity-based constraints on category-specificity in the ventral object processing pathway.
Recent efforts to characterize visual object representations in the ventral object processing pathway in the human brain have led to contrasting proposals about the causes of neural specificity for different categories. Here we use multivariate techniques in a novel way to relate patterns of functional connectivity to patterns of stimulus preferences. Stimulus preferences were measured througho...
متن کاملFunctionally Defined White Matter Reveals Segregated Pathways in Human Ventral Temporal Cortex Associated with Category-Specific Processing
It is unknown if the white-matter properties associated with specific visual networks selectively affect category-specific processing. In a novel protocol we combined measurements of white-matter structure, functional selectivity, and behavior in the same subjects. We find two parallel white-matter pathways along the ventral temporal lobe connecting to either face-selective or place-selective r...
متن کاملShort-latency category specific neural responses to human faces in macaque inferotemporal cortex
In this article I would present evidence to show that timing of the flow of neural signals within the ventral visual stream is a crucial part of the neural code for categorization of faces. We recorded the activity of 554 inferotemporal neurons from two macaque monkeys performing a fixation task. More than 1000 object images including human and non-primate animal faces were presented up to 10 t...
متن کاملScene-Selectivity and Retinotopy in Medial Parietal Cortex
Functional imaging studies in human reliably identify a trio of scene-selective regions, one on each of the lateral [occipital place area (OPA)], ventral [parahippocampal place area (PPA)], and medial [retrosplenial complex (RSC)] cortical surfaces. Recently, we demonstrated differential retinotopic biases for the contralateral lower and upper visual fields within OPA and PPA, respectively. Her...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cerebral cortex
دوره 22 2 شماره
صفحات -
تاریخ انتشار 2012